[No authors listed]
Intestinal cell line studies indicated luminal Na+ homeostasis is essential for proton-coupled peptide absorption, because the driving force of PepT1 activity is supported by the apical Na+/H+ exchanger NHE3. However, there is no direct evidence demonstrating the importance of in vivo luminal Na+ for peptide absorption in animal experiments. To investigate the relationship between luminal Na+ homeostasis and peptide absorption, we took advantage of claudin 15-deficient (cldn15-/-) mice, whereby Na+ homeostasis is disrupted. We quantitatively assessed the intestinal segment responsible for peptide absorption using radiolabeled nonhydrolyzable dipeptide (glycylsarcosine, Gly-Sar) and nonabsorbable fluid phase marker polyethylene glycol (PEG) 4000 in vivo. In wild-type (WT) mice, the concentration ratio of Gly-Sar to PEG 4000 decreased in the upper jejunum, suggesting the upper jejunum is responsible for peptide absorption. Gly-Sar absorption was decreased in the jejunum of cldn15-/- mice. To elucidate the mechanism underlining these impairments, a Gly-Sar-induced short-circuit ( Isc) current was measured. In WT mice, increments of Gly-Sar-induced Isc were inhibited by the luminal application of a NHE3-specific inhibitor S3226 in a dose-dependent fashion. In contrast to in vivo experiments, robust Gly-Sar-induced Isc increments were observed in the jejunal mucosa of cldn15-/- mice. Gly-Sar-induced Isc was inhibited by S3226 or a reduction of luminal Na+ concentration, which mimics low luminal Na+ concentrations in vivo . Our study demonstrates that luminal Na+ homeostasis is important for peptide absorption in native epithelia and that there is a cooperative functional relationship between PepT1 and NHE3. NEW & NOTEWORTHY Our study is the first to demonstrate that luminal Na+ homeostasis is important for proton-coupled peptide absorption in in vivo animal experiments.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |