例如:"lncRNA", "apoptosis", "WRKY"

ACP Acylation Is an Acetyl-CoA-Dependent Modification Required for Electron Transport Chain Assembly.

Mol Cell. 2018 Aug 16;71(4):567-580.e4
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The electron transport chain (ETC) is an important participant in cellular energy conversion, but its biogenesis presents the cell with numerous challenges. To address these complexities, the cell utilizes ETC assembly factors, which include the LYR protein family. Each member of this family interacts with the mitochondrial acyl carrier protein (ACP), the scaffold protein upon which the mitochondrial fatty acid synthesis (mtFAS) pathway builds fatty acyl chains from acetyl-CoA. We demonstrate that the acylated form of ACP is an acetyl-CoA-dependent allosteric activator of the LYR protein family used to stimulate ETC biogenesis. By tuning ETC assembly to the abundance of acetyl-CoA, which is the major fuel of the TCA cycle and ETC, this system could provide an elegant mechanism for coordinating the assembly of ETC complexes with one another and with substrate availability.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读