例如:"lncRNA", "apoptosis", "WRKY"

A novel microtubule nucleation pathway for meiotic spindle assembly in oocytes.

J Cell Biol. 2018 Oct 01;217(10):3431-3445. Epub 2018 Aug 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The meiotic spindle in oocytes is assembled in the absence of centrosomes, the major microtubule nucleation sites in mitotic and male meiotic cells. A crucial, yet unresolved question in meiosis is how spindle microtubules are generated without centrosomes and only around chromosomes in the exceptionally large volume of oocytes. Here we report a novel oocyte-specific microtubule nucleation pathway that is essential for assembling most spindle microtubules complementarily with the Augmin pathway. This pathway is mediated by the kinesin-6 Subito/MKlp2, which recruits the γ-tubulin complex to the spindle equator to nucleate microtubules in Drosophila oocytes. Away from chromosomes, Subito interaction with the γ-tubulin complex is suppressed by its N-terminal region to prevent ectopic microtubule assembly in oocytes. We further demonstrate in vitro that the Subito complex from ovaries can nucleate microtubules from pure tubulin dimers. Collectively, microtubule nucleation regulated by Subito drives spatially restricted spindle assembly in oocytes. © 2018 Romé and Ohkura.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读