例如:"lncRNA", "apoptosis", "WRKY"

Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway.

PLoS Genet.2018 Aug 06;14(8):e1007577. eCollection 2018 Aug
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Gain-of-function mutations in the human CaV2.1 gene CACNA1A cause familial hemiplegic migraine type 1 (FHM1). To characterize cellular problems potentially triggered by CaV2.1 gains of function, we engineered mutations encoding FHM1 amino-acid substitutions S218L (SL) and R192Q into transgenes of Drosophila melanogaster CaV2/cacophony. We expressed the transgenes pan-neuronally. Phenotypes were mild for animals. By contrast, single mutant SL- and complex allele animals showed overt phenotypes, including sharply decreased viability. By electrophysiology, SL- and duanyu1745,SL-expressing neuromuscular junctions (NMJs) exhibited enhanced evoked discharges, supernumerary discharges, and an increase in the amplitudes and frequencies of spontaneous events. Some spontaneous events were gigantic (10-40 mV), multi-quantal events. Gigantic spontaneous events were eliminated by application of TTX-or by lowered or chelated Ca2+-suggesting that gigantic events were elicited by spontaneous nerve firing. A follow-up genetic approach revealed that some neuronal hyperexcitability phenotypes were reversed after knockdown or mutation of Drosophila homologs of phospholipase Cβ (PLCβ), IP3 receptor, or ryanodine receptor (RyR)-all factors known to mediate Ca2+ release from intracellular stores. Pharmacological inhibitors of intracellular Ca2+ store release produced similar effects. Interestingly, however, the decreased viability phenotype was not reversed by genetic impairment of intracellular Ca2+ release factors. On a cellular level, our data suggest inhibition of signaling that triggers intracellular Ca2+ release could counteract hyperexcitability induced by gains of CaV2.1 function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读