例如:"lncRNA", "apoptosis", "WRKY"

A genetic deficiency in folic acid metabolism impairs recovery after ischemic stroke.

Exp. Neurol.2018 Nov;309:14-22. Epub 2018 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Stroke is a leading cause of disability and death world-wide and nutrition is a modifiable risk factor for stroke. Metheylenetetrahydrofolate reductase (MTHFR) is an enzyme involved in the metabolism of folic acid, a B-vitamin. In humans, a polymorphism in MTHFR (677C→T) is linked to increased risk of stroke, but the mechanisms remain unknown. The Mthfr+/- mice mimic a phenotype described in humans at bp677. Using this mouse model, the aim of this study was to investigate the impact of MTHFR deficiency on stroke outcome. Male Mthfr+/- and wildtype littermate control mice were aged (~1.5-year-old) and trained on the single pellet reaching task. After which the sensorimotor cortex was then damaged using photothrombosis (PT), a model for ischemic stroke. Post-operatively, animals were tested for skilled motor function, and brain tissue was processed to assess cell death. Mthfr+/- mice were impaired in skilled reaching 2-weeks after stroke but showed some recovery at 5-weeks compared to wild types after PT damage. Within the ischemic brain, there was increased expression of active caspase-3 and reduced levels of phospho-AKT in neurons of Mthfr+/- mice. Recent data suggests that astrocytes may play a significant role after damage, the impact of MTHFR and ischemic investigated the impact of MTHFR-deficiency on astrocyte function. MTHFR-deficient primary astrocytes showed reduced cell viability after exposure to hypoxia compared to controls. Increased immunofluorescence staining of active caspase-3 and hypoxia-inducible factor 1-alpha were also observed. The data suggest that MTHFR deficiency decreases recovery after stroke by reducing neuronal and astrocyte viability.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读