[No authors listed]
Background:Aerobic glycolysis confers several advantages to tumor cells, including shunting of metabolites into anabolic pathways. In glioblastoma cells, hypoxia induces a flux shift from the pentose phosphate pathway toward glycolysis and a switch from proliferation to migration. The mechanistic link between glycolysis and migration is poorly understood. Since glucose-6-phosphate isomerase (GPI) is identical to the secreted cytokine autocrine motility factor (AMF), we investigated whether GPI/AMF regulates glioblastoma cell invasion. Methods:The expression and hypoxic regulation of GPI/AMF and its receptor AMFR were analyzed in glioblastoma tissue and cell lines. Functional effects were studied in vitro and in xenograft models. Results:High GPI/AMF expression in glioblastomas was found to be associated with a worse patient prognosis, and levels were highest in hypoxic pseudopalisades. Hypoxia upregulated both GPI/AMF and AMFR expression as well as GPI/AMF secretion in vitro. GPI/AMF stimulated cell migration in an autocrine fashion, and GPI/AMF expression was upregulated in migratory cells but reduced in rapidly proliferating cells. Knockdown or inhibition of GPI/AMF reduced glioblastoma cell migration but in part stimulated proliferation. In a highly invasive orthotopic glioblastoma model, GPI/AMF knockdown reduced tumor cell invasion but did not prolong survival. In a highly proliferative model, knockdown tumors were even larger and more proliferative than controls; however, perivascular invasion, provoked by simultaneous bevacizumab treatment, was reduced. Conclusions:GPI/AMF is a potent motogen for glioblastoma cells, explaining in part the association between glycolysis and migration. Targeting GPI/AMF is, however, problematic, since beneficial anti-invasive effects may be outweighed by unintended mitogenic effects. Key Points:1.Increased glycolysis is linked with increased cell migration and invasion in glioblastoma cells. 2.The glycolysis enzyme GPI/AMF may serve as a target for antimetabolic and anti-invasive therapy. 3.Despite reducing tumor invasion, GPI/AMF targeting may have unwanted growth stimulatory effects.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |