例如:"lncRNA", "apoptosis", "WRKY"

Gain of function conferred by selenocysteine: catalytic enhancement of one-electron transfer reactions by thioredoxin reductase.

Protein Sci.2019 Jan;28(1):79-89. doi:10.1002/pro.3480. Epub 2018 Oct 31
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Selenocysteine (Sec) is the 21st amino acid in the genetic code and it is present in a small number of proteins where it replaces the much more commonly used amino acid cysteine (Cys). It is both more complicated and bioenergetically costly to insert Sec into a protein in comparison to Cys, and this cost is most likely compensated by a gain of function to the enzyme/protein in which it is incorporated. Here we investigate one such gain of function, the enhancement of one-electron transfer catalysis. We compared the ability of Sec-containing mouse mitochondrial thioredoxin reductase (mTrxR2) to catalyze the reduction of bovine cytochrome c, ascorbyl radical, and dehydroascorbate in comparison to Cys-containing thioredoxin reductases from D. melanogaster (DmTrxR) and P. falciparum (PfTrxR). The Sec-containing mTrxR2 was able to reduce all three substrates, while the Cys-containing enzymes had little or no activity. In addition, we constructed Cys➔Sec mutants of DmTrxR and PfTrxR and found that this substitution resulted in a gain of function, as these mutant enzymes were now able to catalyze the reduction of these substrates. We also found that in the case of PfTrxR, reduction of cytochrome c was enhanced five-fold in a truncated PfTrxR in which the C-terminal redox center was removed. This shows that some of the ability of thioredoxin reductase to reduce this substrate comes from the flavin coenzyme. We also discuss a possible mechanism by which Sec-containing thioredoxin reductase reduces dehydroascorbate to ascorbate by two sequential, one-electron reductions, in part catalyzed by Sec.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读