[No authors listed]
Idiopathic pulmonary fibrosis (IPF) is an important public health problem, and it has few treatment options given its poorly understood etiology; however, epithelial to mesenchymal transition (EMT) of pneumocytes has been implicated as a factor. Herein, we aimed to explore the underlying mechanisms of lung fibrosis mediated by EMT, with a focus on the alternative splicing of fibroblast growth factor receptor 2 (FGFR2), using bleomycin (BLM)-induced lung fibrotic and transgenic mouse models. We employed BLM-induced and surfactant protein C (SPC)-Cre and LacZ double transgenic mouse models. The results showed that EMT occurred during lung fibrosis. BLM inhibited the expression of epithelial splicing regulatory protein 1 (ESRP1), resulting in enhanced alternative splicing of FGFR2 to the mesenchymal isoform IIIc. BLM-induced lung fibrosis was also associated with the activation of TGF-β/Smad signaling. These findings have implications for rationally targetted strategies to therapeutically address IPF.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |