例如:"lncRNA", "apoptosis", "WRKY"

Pex19 is involved in importing dually targeted tail-anchored proteins to both mitochondria and peroxisomes.

Traffic. 2018 Oct;19(10):770-785. doi:10.1111/tra.12604. Epub 2018 Aug 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Tail-anchored (TA) proteins are embedded into their corresponding membrane via a single transmembrane segment at their C-terminus whereas the majority of the protein is facing the cytosol. So far, cellular factors that mediate the integration of such proteins into the mitochondrial outer membrane were not found. Using budding yeast as a model system, we identified the cytosolic Hsp70 chaperone Ssa1 and the peroxisome import factor Pex19 as import mediators for a subset of mitochondrial TA proteins. Accordingly, deletion of PEX19 results in: (1) growth defect under respiration conditions, (2) alteration in mitochondrial morphology, (3) reduced steady-state levels of the mitochondrial TA proteins Fis1 and Gem1, and (4) hampered in organello import of the TA proteins Fis1 and Gem1. Furthermore, recombinant Pex19 can bind directly the TA proteins Fis1 and Gem1. Collectively, this work identified the first factors that are involved in the biogenesis of mitochondrial TA proteins and uncovered an unexpected function of Pex19.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读