例如:"lncRNA", "apoptosis", "WRKY"

Proteomics reveals Rictor as a noncanonical TGF-β signaling target during aneurysm progression in Marfan mice.

Am J Physiol Heart Circ Physiol. 2018 Nov 01;315(5):H1112-H1126. doi:10.1152/ajpheart.00089.2018. Epub 2018 Jul 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The objective of the present study was to 1) analyze the ascending aortic proteome within a mouse model of Marfan syndrome (MFS; Fbn1C1041G/+) at early and late stages of aneurysm and 2) subsequently test a novel hypothesis formulated on the basis of this unbiased proteomic screen that links changes in integrin composition to transforming growth factor (TGF)-β-dependent activation of the rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling pathway. Ingenuity Pathway Analysis of over 1,000 proteins quantified from the in vivo MFS mouse aorta by data-independent acquisition mass spectrometry revealed a predicted upstream regulator, Rictor, that was selectively activated in aged MFS mice. We validated this pattern of Rictor activation in vivo by Western blot analysis for phosphorylation on Thr1135 in a separate cohort of mice and showed in vitro that TGF-β activates Rictor in an integrin-linked kinase-dependent manner in cultured aortic vascular smooth muscle cells. Expression of β3-integrin was upregulated in the aged MFS aorta relative to young MFS mice and wild-type mice. We showed that β3-integrin expression and activation modulated TGF-β-induced Rictor phosphorylation in vitro, and this signaling effect was associated with an altered vascular smooth muscle cell proliferative-migratory and metabolic in vitro phenotype that parallels the in vivo aneurysm phenotype in MFS. These results reveal that Rictor is a novel, context-dependent, noncanonical TGF-β signaling effector with potential pathogenic implications in aortic aneurysm. NEW & NOTEWORTHY We present the most comprehensive quantitative analysis of the ascending aortic aneurysm proteome in Marfan syndrome to date resulting in novel and potentially wide-reaching findings that expression and signaling by β3-integrin constitute a modulator of transforming growth factor-β-induced rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling and physiology in aortic vascular smooth muscle cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读