例如:"lncRNA", "apoptosis", "WRKY"

Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy.

Aging Cell. 2018 Oct;17(5):e12811. doi:10.1111/acel.12811. Epub 2018 Jul 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cellular senescence, the irreversible cell cycle arrest observed in somatic cells, is an important driver of age-associated diseases. Mitochondria have been implicated in the process of senescence, primarily because they are both sources and targets of reactive oxygen species In the heart, oxidative stress contributes to pathological cardiac ageing, but the mechanisms underlying production are still not completely understood. The mitochondrial enzyme monoamine oxidase-A (MAO-A) is a relevant source of duanyu1670 in the heart through the formation of H2 O2 derived from the degradation of its main substrates, norepinephrine (NE) and serotonin. However, the potential link between MAO-A and senescence has not been previously investigated. Using cardiomyoblasts and primary cardiomyocytes, we demonstrate that chronic MAO-A activation mediated by synthetic (tyramine) and physiological (NE) substrates induces DNA damage response, activation of cyclin-dependent kinase inhibitors p21cip , p16ink4a , and p15ink4b and typical features of senescence such as cell flattening and SA-β-gal activity. Moreover, we observe that duanyu1670 produced by MAO-A lead to the accumulation of p53 in the cytosol where it inhibits parkin, an important regulator of mitophagy, resulting in mitochondrial dysfunction. Additionally, we show that the mTOR kinase contributes to mitophagy dysfunction by enhancing p53 cytoplasmic accumulation. Importantly, restoration of mitophagy, either by overexpression of parkin or inhibition of mTOR, prevents mitochondrial dysfunction and induction of senescence. Altogether, our data demonstrate a novel link between MAO-A and senescence in cardiomyocytes and provides mechanistic insights into the potential role of MAO-dependent oxidative stress in age-related pathologies. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读