例如:"lncRNA", "apoptosis", "WRKY"

Recombinant Leucine-Rich Repeat Flightless-Interacting Protein-1 Improves Healing of Acute Wounds through Its Effects on Proliferation Inflammation and Collagen Deposition.

Int J Mol Sci. 2018 Jul 10;19(7)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Wound healing is an increasing clinical problem involving substantial morbidity, mortality, and rising health care costs. Leucine-rich repeat flightless-interacting protein-1 (LRRFIP-1) regulates toll-like receptor (TLR)-mediated inflammation, suggesting a potential role in the healing of wounds. We sought to determine the role of LRRFIP-1 in wound repair and whether the exogenous addition of recombinant LRRFIP-1 (rLRRFIP-1) affected healing responses. Using a model of full-thickness incisional acute wounds in BALB/c mice, we investigated the effect of wounding on LRRFIP-1 expression. The effect of rLRRFIP-1 on cellular proliferation, inflammation, and collagen deposition was also investigated. LRRFIP-1 was upregulated in response to wounding, was found to directly associate with flightless I (Flii), and significantly increased cellular proliferation both in vitro and in vivo. rLRRFIP-1 reduced Flii expression in wounds in vivo and resulted in significantly improved healing with a concurrent dampening of TLR4-mediated inflammation and improved collagen deposition. Additionally, decreased levels of TGF-β1 and increased levels of TGF-β3 were observed in rLRRFIP-1-treated wounds suggesting a possible antiscarring effect of rLRRFIP-1. Further studies are required to elucidate if the mechanisms behind LRRFIP-1 action in wound repair are independent of Flii. However, these results identify rLRRFIP-1 as a possible treatment modality for improved healing of acute wounds.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读