例如:"lncRNA", "apoptosis", "WRKY"

CBL1-CIPK26-mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth.

FEBS Lett.2018 Aug;592(15):2582-2593. doi:10.1002/1873-3468.13187. Epub 2018 Aug 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Root hairs (RH) are tip growing polarized cells aiding the uptake of nutrients and water into plants. RH differentiation involves the interplay of various hormones and second messengers. Tightly regulated production of reactive oxygen species by the NADPH oxidase RBOHC crucially functions in RH differentiation and Ca2+ -dependent phosphorylation has been implemented in these processes. However, the kinases regulating RBOHC remained enigmatic. Here we identify CBL1-CIPK26 Ca2+ sensor-kinase complexes as modulators of RBOHC activity. Combined genetic, cell biological and biochemical analyses reveal synergistic function of CIPK26-mediated phosphorylation and Ca2+ binding for RBOHC activation. Complementation of rbohC mutant RH phenotypes by a S318/322 phosphorylation deficient RBOHC version suggests flexible and alternating phosphorylation patterns as mechanism fine-tuning production in RH development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读