例如:"lncRNA", "apoptosis", "WRKY"

Dermatan sulfate epimerase 1 and dermatan 4-O-sulfotransferase 1 form complexes that generate long epimerized 4-O-sulfated blocks.

J Biol Chem. 2018 Aug 31;293(35):13725-13735. Epub 2018 Jul 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


During the biosynthesis of chondroitin/dermatan sulfate (CS/DS), a variable fraction of glucuronic acid is converted to iduronic acid through the activities of two epimerases, dermatan sulfate epimerases 1 (DS-epi1) and 2 (DS-epi2). Previous in vitro studies indicated that without association with other enzymes, DS-epi1 activity produces structures that have only a few adjacent iduronic acid units. In vivo, concomitant with epimerization, dermatan 4-O-sulfotransferase 1 (D4ST1) sulfates the GalNAc adjacent to iduronic acid. This sulfation facilitates DS-epi1 activity and enables the formation of long blocks of sulfated iduronic acid-containing domains, which can be major components of CS/DS. In this report, we used recombinant enzymes to confirm the concerted action of DS-epi1 and D4ST1. Confocal microscopy revealed that these two enzymes colocalize to the Golgi, and FRET experiments indicated that they physically interact. Furthermore, FRET, immunoprecipitation, and cross-linking experiments also revealed that DS-epi1, DS-epi2, and D4ST1 form homomers and are all part of a hetero-oligomeric complex where D4ST1 directly interacts with DS-epi1, but not with DS-epi2. The cooperation of DS-epi1 with D4ST1 may therefore explain the processive mode of the formation of iduronic acid blocks. In conclusion, the iduronic acid-forming enzymes operate in complexes, similar to other enzymes active in glycosaminoglycan biosynthesis. This knowledge shed light on regulatory mechanisms controlling the biosynthesis of the structurally diverse CS/DS molecule.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读