例如:"lncRNA", "apoptosis", "WRKY"

A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation.

Microbiology (Reading). 2018 Nov;164(11):1457-1470. doi:10.1099/mic.0.000683. Epub 2018 Jun 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The initial adaptive transcriptional response to nitrogen (N) starvation in Escherichia coli involves large-scale alterations to the transcriptome mediated by the transcriptional activator, NtrC. One of these NtrC-activated genes is yeaG, which encodes a conserved bacterial kinase. Although it is known that YeaG is required for optimal survival under sustained N starvation, the molecular basis by which YeaG benefits N starved E. coli remains elusive. By combining transcriptomics with targeted metabolomics analyses, we demonstrate that the methionine biosynthesis pathway becomes transcriptionally dysregulated in ΔyeaG bacteria experiencing sustained N starvation. It appears the ability of MetJ, the master transcriptional repressor of methionine biosynthesis genes, to effectively repress transcription of genes under its control is compromised in ΔyeaG bacteria under sustained N starvation, resulting in transcriptional derepression of MetJ-regulated genes. Although the aberrant biosynthesis does not appear to be a contributing factor for the compromised viability of ΔyeaG bacteria experiencing sustained N starvation, this study identifies YeaG as a novel regulatory factor in E. coli affecting the transcription of methionine biosynthesis genes under sustained N starvation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读