例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-17 inhibition overcomes chemoresistance and suppresses epithelial-mesenchymal transition through a DEDD-dependent mechanism in gastric cancer.

Int. J. Biochem. Cell Biol.2018 Sep;102:59-70. Epub 2018 Jun 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNAs (miRNAs), a novel class of important gene-regulatory molecules, correlates with tumor growth, invasion, metastasis, and chemo resistance in gastric cancer (GC). Microarray analysis revealed that aberrant expressed microRNA-17 (miR-17) and DEDD were identified in GC. DEDD has been found to act as an endogenous suppressor of tumor growth and metastasis through epithelial-mesenchymal transition (EMT) process. However, the role of miRNA-17 (miR-17) has not been clearly evaluated in GC, thereby a series of in vitro experiments were performed in this study. The levels of miR-17 and DEDD in GC tissues from patients diagnosed with GC and in five GC cell lines (SGC-7901, MKN-45, HGC-27, BGC823, and AGS) were detected. It was found that miR-17 up-regulated and DEDD down-regulated in GC, and SGC-7901 and AGS cells were adopted for the in vitro cell experiments, in which the expression of miR-17 or DEDD was regulated by transfection. DEDD was validated to be a target gene of miR-17. Inhibition of miR-17 impaired EMT in GC cells. In addition, transwell assay and scratch test results revealed that inhibition of miR-17 hindered GC cell invasion and migration. Moreover, inhibition of miR-17 reduced resistance to cisplatin- or 5-Fu in GC cells and induced cisplatin- or 5-Fu-treated GC cell apoptosis, which evaluated by using CCK-8 and flow cytometry assays. From the short review above, the key findings emerge that inhibition of miR-17 may have tumor suppressive effects on GC and enhance its chemosensitivity by promoting DEDD, highlighting a novel target for GC therapy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读