例如:"lncRNA", "apoptosis", "WRKY"

A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster.

PLoS ONE. 2018 Jun 27;13(6):e0198362. eCollection 2018
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Octopamine regulates feeding behavioral responses in Drosophila melanogaster, however the molecular and circuit mechanisms have not been fully elucidated. Here, we investigated the role of a subset of octopaminergic neurons, the OA-VPM4 cluster, in sucrose acceptance behavior. Thermogenetic activation of Gal4 lines containing OA-VPM4 promoted proboscis extension to sucrose, while optogenetic inactivation reduced extension. Anatomically, the presynaptic terminals of OA-VPM4 are in close proximity to the axons of sugar-responsive gustatory sensory neurons. Moreover, knockdown of a specific class of octopamine receptor, OAMB, selectively in sugar-sensing gustatory neurons decreased the behavioral response to sucrose. By calcium imaging experiments, we found that application of octopamine potentiates sensory responses to sucrose in satiated flies. Taken together, these findings suggest a model by which OA-VPM4 promotes feeding behavior by modulating the activity of sensory neurons.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读