例如:"lncRNA", "apoptosis", "WRKY"

CXCL13 produced by macrophages due to Fli1 deficiency may contribute to the development of tissue fibrosis, vasculopathy and immune activation in systemic sclerosis.

Exp. Dermatol.2018 Sep;27(9):1030-1037. doi:10.1111/exd.13724. Epub 2018 Jul 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


CXCL13, a chemokine for B cells, follicular T cells, T helper 17 cells, and regulatory T cells, is reported to contribute to the development of systemic sclerosis (SSc), reflecting aberrant activation of immune system. To better understand the role of CXCL13 in SSc, we investigated the influence of Fli1 deficiency, a potential predisposing factor of this disease, on CXCL13 expression and assessed the clinical correlation of serum CXCL13 levels by multivariate regression analysis. Haploinsufficient loss of Fli1 remarkably induced CXCL13 expression in murine peritoneal macrophages, while gene silencing of FLI1 did not affect the expression of CXCL13 in human dermal fibroblasts and human dermal microvascular endothelial cells. Serum CXCL13 levels were elevated in SSc patients compared with healthy controls and correlated positively with skin score and negatively with pulmonary function test results. SSc patients with elevated serum CXCL13 levels had longer disease duration, diffuse cutaneous involvement, interstitial lung disease (ILD), heart involvement, pulmonary arterial hypertension, Raynaud's phenomenon, pitting scars, digital ulcers, telangiectasia, and high serum IgG levels more frequently than the other patients. In particular, serum CXCL13 levels were associated with ILD and digital ulcers by multivariate regression analysis. Taken together, these results indicate that CXCL13 expression is upregulated by Fli1 deficiency in macrophages, potentially contributing to the development of tissue fibrosis, vasculopathy and immune activation in SSc, especially ILD and digital ulcers.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读