[No authors listed]
Acteoside has been reported to have antioxidant and neuroprotective effect, which is a promising therapeutic way in prevention and treatment of Parkinson's disease. The present study was aimed to understand the neuroprotective effect of acteoside and to elucidate its underlying mechanism. 6-hydroxydopamine (6-OHDA)-induced neural damage in zebrafish model was used to study the protective effect of acteoside on Parkinson's disease (PD). Locomotion behavioral test showed that acteoside could prevent 6-OHDA-stimulated movement disorders. Anti-tyrosine hydroxylase (TH) whole-mount immunostaining analysis showed that acteoside could prevent 6-OHDA-induced dopaminergic neuron death. In addition, pretreatment with acteoside could upregulate antioxidative enzymes by activating the Nrf2/ARE signaling pathway in zebrafish. Meanwhile, acteoside was found to be distributed in the brain after intraperitoneal injection into the adult zebrafish, indicating that this compound could penetrate the blood-brain-barrier (BBB). This study demonstrated that acteoside could penetrate BBB and have potential therapeutic value for PD by activating the Nrf2/ARE signaling pathway and attenuating the oxidative stress.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |