例如:"lncRNA", "apoptosis", "WRKY"

A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement.

Plant Physiol.2018 Aug;177(4):1666-1678. Epub 2018 Jun 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Stomatal movement, critical for photobiosynthesis, respiration, and stress responses, is regulated by many factors, among which abscisic acid (ABA) is critical. Early events of ABA signaling involve Ca2+ influx and an increase of cytoplasmic calcium ([Ca2+]cyt). Positive regulators of this process have been extensively studied, whereas negative regulators are obscure. ABA-induced stomatal closure involves K+ flux and vacuolar convolution. How these processes are connected with Ca2+ is not fully understood. We report that pat10-1, a null mutant of Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is hypersensitive to ABA-induced stomatal closure and vacuolar convolution. A similar phenotype was observed in cbl2;cbl3, the double mutant of CBL2 and CBL3, whose tonoplast association depends on PAT10. Functional loss of the PAT10-CBL2/CBL3 system resulted in enhanced Ca2+ influx and [Ca2+]cyt elevation. Promoting vacuolar K+ accumulation by overexpressing NHX2 suppressed ABA-hypersensitive stomatal closure and vacuolar convolution of the mutants, suggesting that PAT10-CBL2/CBL3 positively mediates vacuolar K+ accumulation. We have identified CBL-interacting protein kinases (CIPKs) that mediate CBL2/CBL3 signaling during ABA-induced stomatal movement. Functional loss of the PAT10-CBL2/3-CIPK9/17 system in guard cells enhanced drought tolerance. We propose that the tonoplast CBL-CIPK complexes form a signaling module that negatively regulates ABA signaling during stomatal movement. © 2018 American Society of Plant Biologists. All rights reserved.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读