例如:"lncRNA", "apoptosis", "WRKY"

Structural insights into Drosophila-C3PO complex assembly and 'Dynamic Side Port' model in substrate entry and release.

Nucleic Acids Res.2018 Sep 19;46(16):8590-8604
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In Drosophila and human, component 3 promoter of RISC (C3PO), a heteromeric complex, enhances RISC assembly and promotes RISC activity. Here, we report crystal structure of full-length Drosophila C3PO (E126Q), an inactive C3PO mutant displaying much weaker RNA binding ability, at 2.1 Å resolution. In addition, we also report the cryo-EM structures of full-length Drosophila C3PO (E126Q), C3PO (WT) and SUMO-C3PO (WT, sumo-TRAX + Translin) particles trapped at different conformations at 12, 19.7 and 12.8 Å resolutions, respectively. Crystal structure of C3PO (E126Q) displays a half-barrel architecture consisting of two Trax/Translin heterodimers, whereas cryo-EM structures of C3PO (E126Q), C3PO (WT) and SUMO-C3PO (WT) adopt a closed football-like shape with a hollow interior cavity. Remarkably, both cryo-EM structures of Drosophila C3PO (E126Q) and Drosophila SUMO-C3PO (WT) particles contain a wide side port (∼25 Å × ∼30 Å versus ∼15 Å × ∼20 Å) for RNA substrate entry and release, formed by a pair of anti-parallel packed long α1 helices of TRAX subunits. Notably, cryo-EM structure of SUMO-C3PO showed that four copies of extra densities belonging to N-terminal SUMO tag are located at the outside shell of SUMO-C3PO particle, which demonstrated that the stoichiometry of TRAX/Translin for the in vitro expressed and assembled full-length Drosophila-SUMO-C3PO particle is 4:4, suggesting Drosophila C3PO is composed by TRAX/translin at a ratio of 4:4. Remarkably, the comparison of the cryo-EM structures suggests that the C3PO side ports regulated by α1 helices of TRAX molecules are highly dynamic. Hence, we propose that C3PO particles could adopt a 'Dynamic Side Port' model to capture/digest nucleic acid duplex substrate and release the digested fragments through the dynamic side ports.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读