[No authors listed]
Superoxide dismutase, an enzyme that converts superoxide into less-toxic hydrogen peroxide and oxygen, has been shown to mediate behavioral response to pathogens. However, it remains largely unknown how superoxide dismutase is regulated in the nervous system amid pathogen-induced gut dysbiosis. Although there are five superoxide dismutases in C. elegans, our genetic analyses suggest that SOD-1 is the primary superoxide dismutase to mediate the pathogen avoidance response. When C. elegans are fed a P. aeruginosa diet, the lack of SOD-1 contributes to enhanced lethality. We found that guanylyl cyclases GCY-5 and GCY-22 and neuropeptide receptor NPR-1 act antagonistically to regulate SOD-1 expression in the gustatory neuron ASER. After C. elegans ingests a diet that contributes to high levels of oxidative stress, the temporal regulation of SOD-1 and the SOD-1-dependent response in the gustatory system demonstrates a sophisticated mechanism to fine-tune behavioral plasticity. Our results may provide the initial glimpse of a strategy by which a multicellular organism copes with oxidative stress amid gut dysbiosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |