例如:"lncRNA", "apoptosis", "WRKY"

Downregulation of iNOS, IL-1β, and P2X7 Expression in Mast Cells via Activation of PAR4 Contributes to the Inhibition of Visceral Hyperalgesia in Rats.

J Immunol Res. 2018 May 09;2018:3256908. doi:10.1155/2018/3256908. eCollection 2018
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Protease-activated receptor 4 (PAR4) is implicated in the inhibition of visceral hyperalgesia. In the present study, the effects of PAR4 activation on visceral hypersensitivity and expression of inflammatory mediators, including interleukin-1β (IL-1β), P2RX7 purinergic receptor (P2X7), inducible nitric oxide synthase (iNOS), and tryptase, in mast cells (MCs) were investigated via in vivo and in vitro studies. The numbers of tryptase-positive MCs with extensive PAR4, P2X7, and iNOS expression were increased in the colons of visceral hyperalgesia rats compared with controls. Intracolonic administration of PAR4-activating peptide (PAR4-AP) significantly attenuated the visceral hypersensitivity to colorectal distention and reduced the iNOS, IL-1β, P2X7, and tryptase protein and mRNA levels in the colonic mucosa. Treatment of rat bone marrow MCs (BMMCs) with PAR4-AP also reduced the iNOS, IL-1β, P2X7, and tryptase protein and mRNA levels. ERK1/2 and p38 activators (t-butylhydroquinone, tBHQ, and U-46619) reversed the suppressive effect of PAR4 activation on IL-1β and iNOS expression, whereas ERK1/2 and p38 inhibitors (PD98059 and SB203580) reversed the suppressive effect of PAR4 activation on P2X7 and tryptase expression. Our results indicate that the downregulation of inflammatory mediators, including iNOS, IL-1β, P2X7, and tryptase, in MCs that are mediated by PAR4 activation could inhibit visceral hyperalgesia via the mitogen-activated protein kinase (MAPK) signal pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读