例如:"lncRNA", "apoptosis", "WRKY"

Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling.

Matrix Biol.2018 Dec;74:35-51. Epub 2018 May 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读