例如:"lncRNA", "apoptosis", "WRKY"

Hyperhomocysteinemia in polycystic ovary syndrome: decreased betaine-homocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism.

Reprod. Biomed. Online. 2018 Aug;37(2):234-241. Epub 2018 May 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


RESEARCH QUESTION:What are the metabolic characteristics of homocysteine in polycystic ovary syndrome (PCOS)? DESIGN:Homocysteine concentrations were determined in serum samples from non-obese and obese control subjects and PCOS patients. Homocysteine metabolism was studied in a rat model of PCOS established using dehydroepiandrosterone (DHEA) or DHEA in combination with a high-fat diet (HFD). RESULTS:It was shown that (i) serum homocysteine concentrations were greater in PCOS patients than in control subjects in the obese group (P < 0.05) and serum homocysteine concentrations were significantly higher in the obese group than in the non-obese group, regardless of PCOS status (both P < 0.05); (ii) serum homocysteine concentrations were significantly increased in DHEA + HFD-induced rats compared with controls (P < 0.05); (iii) when compared with the control group, mRNA concentrations of homocysteine metabolic enzymes Bhmt and Cbs were significantly reduced in the liver tissues of DHEA + HFD-induced rats (both P < 0.0001); (iv) when compared with the control group, there was a significant decrease in the methylation concentrations of the Cbs (P < 0.05) and Bhmt (P < 0.05 and P < 0.0001) promoter in the DHEA + HFD group. The methylation patterns, together with previous data, indicate that hypomethylated promoter-mediated transcriptional activation of Bhmt and Cbs might be a defence mechanism against PCOS-related hyperhomocysteinemia. CONCLUSIONS:These findings indicate that decreased liver Bhmt and Cbs-mediated homocysteine metabolism might have a role in hyperhomocysteinemia in PCOS and provides further evidence for a potential role of decreased liver function in PCOS.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读