例如:"lncRNA", "apoptosis", "WRKY"

Hypochlorite modified albumins promote cell death in the tubule interstitium in rats via mitochondrial damage in obstructive nephropathy and the protective effects of antioxidant peptides.

Free Radic. Res.2018 May;52(5):616-628. doi:10.1080/10715762.2018.1457789
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A major feature of the injury sustained by the kidney during obstructive nephropathy is a profound induction of apoptosis in the tubular epithelium. In this study, we explored the central roles of mitochondria and the mechanism of the protective effect of the mitochondrial targeted peptides in tubular cell apoptosis and interstitial fibrosis during obstructive nephropathy. Unilateral ureter obstruction (UUO) was performed on rats, and the animals were randomly assigned to intravenous treatment with normal saline, rat serum albumin (RSA), or HOCl-rat serum albumin (HOCl-RSA) in the presence or absence of SS-31. A sham-operation control group was set up by left ureteral dissociation but not ligation. Compared with the control group, UUO animals displayed fibrotic abnormalities, accompanied by increased expression of collagen-I, fibronectin, α-SMA protein and mRNA in the renal interstitium. They also displayed oxidative stress, as evidenced by increased levels of HOCl-alb, TBARS, and mitochondrial reactive oxygen species and a decrease in MnSOD activity in the renal homogenate. Damage to mitochondrial structure and functions was observed, as evidenced by a decrease in the mitochondrial membrane potential (MMP), ATP production, mtDNA copy number alterations and release of cytochrome C (cyto C) from the mitochondria to the cytoplasm. These changes were accompanied by activation of caspase-3, caspase-7, caspase-9, and and increased apoptotic cells in the proximal tubules. HOCl-RSA challenge further exacerbated the above biological effects in UUO animals, but these effects were prevented by administration of SS-31. These data suggested that accumulation of HOCl-alb may promote tubular cell apoptosis and interstitial fibrosis, probably related to mitochondrial oxidative stress and damage, and that SS-31 might contribute to apoptotic pathway suppression via scavenging of in the mitochondria.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读