例如:"lncRNA", "apoptosis", "WRKY"

Etoposide-induced protein 2.4 functions as a regulator of the calcium ATPase and protects pancreatic β-cell survival.

J Biol Chem. 2018 Jun 29;293(26):10128-10140. Epub 2018 May 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Calcium homeostasis is essential for maintaining the viability and function of pancreatic β cells and plays a key role in preventing the development of diabetes. Decreased levels of ATPase sarcoplasmic/endoplasmic reticulum Ca2+-transporting 2 (ATP2a2), the main calcium pump in β cells, are often found in individuals with diabetes and in diabetic animal models. However, the regulators of ATP2a2 and the molecular mechanisms responsible for controlling ATP2a2 activity remain unclear. Etoposide-induced protein 2.4 (Ei24) is also down-regulated in β cells of diabetic individuals, whereas the effect of decreased Ei24 level on β-cell function is not clarified. Here, using Cre-LoxP and CRISPR/Cas9-based genomic knockout (KO) approaches to generate pancreatic β cell-specific Ei24 KO mice and pancreatic β-cell lines, we found that Ei24 regulates ATP2a2 activity. Specifically, we observed that Ei24 binds to ATP2a2 through Ei24 residues 293-299, which we named here the ATP2a2-interacting region (AIR). Loss of Ei24 inactivated ATP2a2, disrupted calcium homeostasis, and deactivated the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2)-AMP-activated protein kinase (AMPK) pathway. Elevation of calcium concentration in the endoplasmic reticulum or agonist-induced AMPK activation rescued pancreatic β-cell survival and improved glucose tolerance of Ei24 KO mice. Our findings indicate that targeting the Ei24-ATP2a2 interaction to increase ATP2a2 activity can protect pancreatic β cells and improve glucose homeostasis in diabetic models, suggesting that Ei24 could potentially serve as a target to prevent or manage diabetes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读