例如:"lncRNA", "apoptosis", "WRKY"

Targeting the dopamine D1 receptor or its downstream signalling by inhibiting phosphodiesterase-1 improves cognitive performance.

Br J Pharmacol. 2018 Jul;175(14):3021-3033. doi:10.1111/bph.14350. Epub 2018 Jun 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND AND PURPOSE:Insufficient prefrontal dopamine 1 (D1 ) receptor signalling has been linked to cognitive dysfunction in several psychiatric conditions. Because the PDE1 isoform B (PDE1B) is postulated to regulate D1 receptor-dependent signal transduction, in this study we aimed to elucidate the role of PDE1 in cognitive processes reliant on D1 receptor function. EXPERIMENTAL APPROACH:Cognitive performance of the D1 receptor agonist, SKF38393, was studied in the T-maze continuous alternation task and 5-choice serial reaction time task. D1 receptor/PDE1B double-immunohistochemistry was performed using human and rat prefrontal brain sections. The pharmacological activity of the PDE1 inhibitor, ITI-214, was assessed by measuring the increase in cAMP/cGMP in prefrontal brain tissue and its effect on working memory performance. Mechanistic studies on the modulation of prefrontal neuronal transmission by SKF38393 and ITI-214 were performed using extracellular recordings in brain slices. KEY RESULTS:SKF38393 improved working memory and attentional performance in rodents. D1 receptor/PDE1B co-expression was verified in both human and rat prefrontal brain sections. The pharmacological activity of ITI-214 on its target, PDE1, was demonstrated by its ability to increase prefrontal cAMP/cGMP. In addition, ITI-214 improved working memory performance. Both SKF38393 and ITI-214 facilitated neuronal transmission in prefrontal brain slices. CONCLUSION AND IMPLICATIONS:We hypothesize that PDE1 inhibition improves working memory performance by increasing prefrontal synaptic transmission and/or postsynaptic D1 receptor signalling, by modulating prefrontal downstream second messenger levels. These data, therefore, support the use of PDE1 inhibitors as a potential approach for the treatment of cognitive dysfunction.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读