[No authors listed]
Intracellular cholesterol transport proteins move cholesterol to different subcellular compartments and thereby regulate its final metabolic fate. In hepatocytes, for example, delivery of high-density lipoprotein (HDL)-associated cholesterol for bile acid synthesis or secretion into bile facilitates cholesterol elimination from the body (anti-atherogenic effect), whereas delivery for esterification and subsequent incorporation into apolipoprotein B-containing atherogenic lipoproteins (e.g. very-low-density lipoprotein (VLDL)) enhances cholesterol secretion into the systemic circulation (pro-atherogenic effect). Intracellular cholesterol transport proteins such as sterol carrier protein-2 (SCP2) should, therefore, play a role in regulating these pro- or anti-atherosclerotic processes. Here, we sought to evaluate the effects of SCP2 deficiency on the development of diet-induced atherosclerosis. We generated LDLR-/- mice deficient in SCP2/SCPx (LS) and examined the effects of this deficiency on Western diet-induced atherosclerosis. SCP2/SCPx deficiency attenuated atherosclerosis in LS mice by >80% and significantly reduced plasma cholesterol and triglyceride levels. Investigation of the likely underlying mechanisms revealed a significant reduction in intestinal cholesterol absorption (given as an oral gavage) in SCP2/SCPx-deficient mice. Consistently, siRNA-mediated knockdown of SCP2 in intestinal cells significantly reduced cholesterol uptake. Furthermore, hepatic triglyceride/VLDL secretion from the liver or hepatocytes isolated from SCP2/SCPx-deficient mice was significantly reduced. These results indicate an important regulatory role for SCP2 deficiency in attenuating diet-induced atherosclerosis by limiting intestinal cholesterol absorption and decreasing hepatic triglyceride/VLDL secretion. These findings suggest targeted inhibition of SCP2 as a potential therapeutic strategy to reduce Western diet-induced dyslipidemia and atherosclerosis.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |