例如:"lncRNA", "apoptosis", "WRKY"

Inhibition of NLRP9b attenuates acute lung injury through suppressing inflammation, apoptosis and oxidative stress in murine and cell models.

Biochem Biophys Res Commun. 2018 Sep 05;503(2):436-443. Epub 2018 Jun 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Acute lung injury (ALI), known a severe disease along with high morbidity and mortality, is lacking of specific therapies. Inflammation, apoptosis and oxidative stress are critical pathologies that contribute to ALI. Recently, there is study indicated that NLRP9b, a NOD-like receptor (NLR) member, is critical in modulation of inflammatory response. However, the effects of NLRP9b on sepsis-associated ALI, and the underlying molecular mechanism have not been understood. In the present study, the wild type (WT) and NLRP9b-knockout (NLRP9b-/-) mice with C57B/L6 background were subjected to a cecal ligation and puncture (CLP) for ALI murine model establishment. The findings indicated that NLRP9b-/- improved the survival rate of CLP-induced ALI mice, and inhibited pulmonary histopathological alterations, inflammation, and apoptosis. NLRP9b-/- reduced the activation of inhibitor of κBα/nuclear factor kappa B (IκBα/NF-κB), apoptosis-associated speck-like protein containing a Caspase-recruitment domain (ASC)/Casapse-1 and Caspase-3/poly (ADP-ribose) polymerase signaling pathways in CLP-challenged mice with ALI. In vitro, mouse epithelial cells (MLE-12) were incubated with lipopolysaccharide (LPS) or recombinant NLRP9b caused a significant increased of pro-inflammatory cytokines or chemokine, and reactive oxygen species generation; however, these changes were markedly alleviated by NLRP9-knockdown using its specific siRNA sequence. Pre-treatment of MLE-12 cells with scavenger of N-acetylcysteine (NAC) remarkably decreased lipopolysaccharide (LPS)- and rMuNLRP9-induced production of and the secretion of inflammatory cytokines or chemokine, as well as the activity of IκBα/NF-κB, ASC/Casapse-1 and signaling pathways. Together, the findings here suggested that NLRP9b played an essential role in lung inflammation, apoptosis and oxidative stress of sepsis-induced ALI animal model or in LPS-induced MLE-12 cells, providing that NLRP9b inhibition might be a potential therapeutic option for ALI.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读