例如:"lncRNA", "apoptosis", "WRKY"

Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma.

Am J Physiol Lung Cell Mol Physiol. 2018 Aug 01;315(2):L253-L264. doi:10.1152/ajplung.00567.2017. Epub 2018 Apr 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Airway eosinophilic inflammation is a key feature of type 2 high asthma. The role of epithelial microRNA (miR) in airway eosinophilic inflammation remains unclear. We examined the expression of miR-221-3p in bronchial brushings, induced sputum, and plasma from 77 symptomatic, recently diagnosed, steroid-naive subjects with asthma and 36 healthy controls by quantitative PCR and analyzed the correlation between miR-221-3p expression and airway eosinophilia. We found that epithelial, sputum, and plasma miR-221-3p expression was significantly decreased in subjects with asthma. Epithelial miR-221-3p correlated with eosinophil in induced sputum and bronchial biopsies, fraction of exhaled nitric oxide, blood eosinophil, epithelial gene signature of type 2 status, and methacholine provocative dosage required to cause a 20% decline in forced expiratory volume in the first second in subjects with asthma. Sputum miR-221-3p also correlated with airway eosinophilia and was partially restored after inhaled corticosteroid treatment. Inhibition of miR-221-3p expression suppressed chemokine (C-C motif) ligand (CCL) 24 (eotaxin-2), CCL26 (eotaxin-3), and periostin (POSTN) expression in BEAS-2B bronchial epithelial cells. We verified that chemokine (C-X-C motif) ligand (CXCL) 17, an anti-inflammatory chemokine, is a target of miR-221-3p, and epithelial CXCL17 expression significantly increased in asthma. CXCL17 inhibited CCL24, CCL26, and POSTN expression via the p38 MAPK pathway. Airway overexpression of miR-221-3p exacerbated airway eosinophilic inflammation, suppressed CXCL17 expression, and enhanced CCL24, CCL26, and POSTN expression in house dust mite-challenged mice. Taken together, epithelial and sputum miR-221-3p are novel biomarkers for airway eosinophilic inflammation in asthma. Decreased epithelial miR-221-3p may protect against airway eosinophilic inflammation by upregulating anti-inflammatory chemokine CXCL17.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读