[No authors listed]
Embryonic stem cells have the ability to self-renew or differentiate and these processes are under tight control. We previously reported that the polyamine regulator AMD1 is critical for embryonic stem cell self-renewal. The polyamines putrescine, spermidine, and spermine are essential organic cations that play a role in a wide array of cellular processes. Here, we explore the essential role of the polyamines in the promotion of self-renewal and identify a new stem cell regulator that acts downstream of the polyamines: MINDY1. MINDY1 protein levels are high in embryonic stem cells (ESCs) and are dependent on high polyamine levels. Overexpression of MINDY1 can promote ESC self-renewal in the absence of the usually essential cytokine Leukemia Inhibitory Factor (LIF). MINDY1 protein is prenylated and this modification is required for its ability to promote self-renewal. We go on to show that Mindy1 RNA is targeted for repression by mir-710 during Neural Precursor cell differentiation. Taken together, these data demonstrate that high polyamine levels are required for ESC self-renewal and that they function, in part, through promotion of high MINDY1 levels. Stem Cells 2018;36:1170-1178.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |