[No authors listed]
BACKGROUND AND PURPOSE:Intracerebral hemorrhage (ICH) is a devastating disease with a 30-day mortality of ~50%. There are no effective therapies for ICH. ICH results in brain damage in 2 major ways: through the mechanical forces of extravasated blood and then through toxicity of the intraparenchymal blood components including hemoglobin/iron. LTF (lactoferrin) is an iron-binding protein, uniquely abundant in polymorphonuclear neutrophils After ICH, circulating blood enter the ICH-afflicted brain where they release LTF. By virtue of sequestrating iron, LTF may contribute to hematoma detoxification. METHODS:ICH in mice was produced using intrastriatal autologous blood injection. duanyu1451s were depleted with intraperitoneal administration of anti-Ly-6G antibody. Treatment of mouse brain cell cultures with lysed RBC or iron was used as in vitro model of ICH. RESULTS:LTF mRNA was undetectable in the mouse brain, even after ICH. Unlike mRNA, LTF protein increased in ICH-affected hemispheres by 6 hours, peaked at 24 to 72 hours, and remained elevated for at least a week after ICH. At the single cell level, LTF was detected in duanyu1451s in the hematoma-affected brain at all time points after ICH. We also found elevated LTF in the plasma after ICH, with a temporal profile similar to LTF changes in the brain. Importantly, mrLTF (recombinant mouse LTF) reduced the cytotoxicity of lysed RBC and FeCl3 to brain cells in culture. Ultimately, in an ICH model, systemic administration of mrLTF (at 3, 24, and 48 hours after ICH) reduced brain edema and ameliorated neurological deficits caused by ICH. mrLTF retained the benefit in reducing behavioral deficit even with 24-hour treatment delay. Interestingly, systemic depletion of duanyu1451s at 24 hours after ICH worsened neurological deficits, suggesting that infiltration into the brain at later stages after ICH could be a beneficial response. CONCLUSIONS:LTF delivered to the ICH-affected brain by infiltrating duanyu1451s may assist in hematoma detoxification and represent a powerful potential target for the treatment of ICH.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |