例如:"lncRNA", "apoptosis", "WRKY"

FGF8 and FGFR3 are up-regulated in hypertrophic chondrocytes: Association with chondrocyte death in deep zone of Kashin-Beck disease.

Biochem. Biophys. Res. Commun.2018 Jun 02;500(2):184-190. Epub 2018 Apr 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:The aim of this study was to investigate FGF8 and FGFR3 expression in clinical samples of Kashin-Beck disease (KBD), an endemic osteochondropathy found in China, as well as in pre-clinical models of this disease. METHOD:Cartilage was collected from the hand phalanges of five patients with KBD and from five healthy children. Sprague-Dawley rats were administered a selenium-deficient diet for four weeks prior to exposure to the T-2 toxin. ATDC5 cells were differentiated into hypertrophic chondrocytes for twenty-one days, and then treated with 3-morpholinosydnonimine (SIN-1) (0, 1, 3, or 5 mM) for 24 h. FGF8 and FGFR3 were visualized using immunohistochemistry; protein levels were assessed by western blotting, and mRNA levels were determined by real-time RT-PCR. RESULTS:Increased staining of FGF8 and FGFR3 was observed in the cartilage of children with KBD compared to normal children. Both increased FGF8 and FGFR3 staining, as well as protein levels, were also observed in the cartilage of rats fed normal or Se-deficient diets plus T-2 toxin exposure, compared to those in rats fed with normal or Se-deficient diets alone. SIN-1 treatment of hypertrophic chondrocytes (ATCD5 cells) increased FGF8 and FGFR3 protein and mRNA levels in a dose-dependent manner. CONCLUSION:Our data indicate that SIN-1 induces FGF8 and FGFR3 overexpression and this is involved in the abnormal terminal differentiation and degradation of the ECM in cartilage. FGF8 and FGFR3 may therefore play an important role in the onset of deep zone necrosis and pathogenesis in KBD in adolescent children.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读