例如:"lncRNA", "apoptosis", "WRKY"

PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages.

Cardiovasc Res. 2018 Jul 01;114(8):1145-1153
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aims:Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been shown to influence macrophage biology and modulate atherogenesis. We conducted this study to examine the regulation of scavenger receptors (SRs) (LOX-1, SRA, and CD36) and oxidized liporoptein cholesterol (ox-LDL) uptake in macrophages by PCSK9. Methods and results:Treatment of mouse peritoneal macrophages with tumour necrosis factor alpha (TNF-α) resulted in concentration-dependent modest, but significant, increase in PCSK9 expression. Importantly, treatment of TNF-α primed macrophages with recombinant murine PCSK9 increased the expression of LOX-1, SRA, and CD36 2-5 fold, and enhanced ox-LDL uptake by ≈five-fold. The increase in LOX-1 was much greater than in SRA or CD36. PCSK9 inhibition (by siRNA transfection or use of macrophages from PCSK9-/- mice) reduced the expression of SRs (LOX-1 ≫ SRA or CD36). Ox-LDL uptake in response to PCSK9 was also inhibited in macrophages from LOX-1-/- mice (P < 0.05 vs. macrophages from SRA-/- and CD36-/- mice). Upregulation of PCSK9 by cDNA transfection induced intense ox-LDL uptake which was inhibited by co-transfection of cells with siRNA LOX-1 (P < 0.05 vs. siRNA SRA or siRNA CD36). Further, TNF-α-mediated PCSK9 upregulation and subsequent expression of SRs and ox-LDL uptake were reduced in macrophages from gp91phox-/-, p47phox-/- and p22phox-/- mice (vs. macrophages from wild-type mice). Conclusions:This study shows that in an inflammatory milieu, elevated levels of PCSK9 potently stimulate the expression of SRs (principally LOX-1) and ox-LDL uptake in macrophages, and thus contribute to the process of atherogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读