[No authors listed]
Myocardial infarction (MI), characterized by interruption of blood and oxygen to myocardium, is a common yet fatal cardiovascular event that causes progressive damage to myocardial tissue and eventually leads to heart failure. Previous studies have shown increased expression of microRNA-223 (miR-223) in infarcted myocardial tissues of humans and in rat models of MI. However, the role of miR-223 in cell survival during MI has not been elucidated. Thus, we aimed to investigate whether miR-223 participates in the regulation of cardiac ischemia-induced injury and to elucidate the underlying mechanisms of this process. qRT-PCR revealed that miR-223 expression levels are significantly upregulated in the myocardial tissues of rats with post-MI heart failure and in hypoxia-treated neonatal rat cardiomyocytes (NRCMs) and H9c2 cells, which indicates that miR-223 may be associated with chronic ischemia. We also transfected NRCMs and H9c2 cells with miR-223 mimics or inhibitors in vitro, and the results revealed that increasing miR-223 expression protected cells from hypoxia-induced apoptosis and excessive autophagy, whereas decreasing miR-223 expression had contrasting effects. Further exploration of the mechanism showed that poly(ADP-ribose) polymerase 1 is a target gene of miR-223 and that silencing prevented hypoxia-induced cell injury; additionally, silencing Pduanyu37-1 blocked the aggravated impact of miR-223 inhibitors. Thus, Pduanyu37-1 mediates the protective effects of miR-223 in hypoxia-treated cardiomyocytes. We also investigated the involvement of the Akt/mTOR pathway in the above phenomena. We found that miR-223 overexpression and Pduanyu37-1 silencing positively regulated the Akt/mTOR pathway and that treating cells with NVP-BEZ235 (BEZ235), a novel dual Akt/mTOR inhibitor, could reverse the inhibitory effects of both the miR-223 mimics and Pduanyu37-1 siRNA on hypoxia-induced apoptosis and autophagy. Taken together, our findings showed that miR-223 protects NRCMs and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting thus, miR-223 may be a potential target in the treatment of MI in the future.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |