[No authors listed]
The plasticity of solid tumors between the epithelial and mesenchymal states critically influences their malignant progression and metastasis. The epithelial-mesenchymal transition (EMT), which supports cancer cell invasion and metastasis, is promoted by pro-survival members (e.g., Bcl-2 and Bcl-XL) of the Bcl-2 protein family, which are well-known key apoptosis regulators. We found that Bcl-w, another pro-survival member, promotes EMT by increasing respiratory complex-I activity and reactive oxygen species levels. In contrast, pro-apoptotic Bax facilitates mesenchymal-epithelial transition by binding to complex-I, which inhibits complex-I-induced production. Functional antagonism between pro-survival and pro-apoptotic proteins in regulating tumor plasticity was directly confirmed by co-expressing Bax with Bcl-w or Bcl-XL. Therefore, the balance between the functionally opposing Bcl-2 proteins appears to be a critical determinant of cancer cell phenotypes. We further showed that sub-lethal doses of γ-radiation induced EMT by increasing Bcl-XL and Bcl-w levels and complex-I activity. We propose that Bcl-2 proteins and complex-I are potential targets for preventing tumor progression and the malignant actions of radiotherapy.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |