例如:"lncRNA", "apoptosis", "WRKY"

Nutritional Control of Stem Cell Division through S-Adenosylmethionine in Drosophila Intestine.

Dev. Cell. 2018 Mar 26;44(6):741-751.e3
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The intestine has direct contact with nutritional information. The mechanisms by which particular dietary molecules affect intestinal homeostasis are not fully understood. In this study, we identified S-adenosylmethionine (SAM), a universal methyl donor synthesized from dietary methionine, as a critical molecule that regulates stem cell division in Drosophila midgut. Depletion of either dietary methionine or SAM synthesis reduces division rate of intestinal stem cells. Genetic screening for putative SAM-dependent methyltransferases has identified protein synthesis as a regulator of the stem cells, partially through a unique diphthamide modification on eukaryotic elongation factor 2. In contrast, SAM in nutrient-absorptive enterocytes controls the interleukin-6-like protein Unpaired 3, which is required for rapid division of the stem cells after refeeding. Our study sheds light upon a link between diet and intestinal homeostasis and highlights the key metabolite SAM as a mediator of cell-type-specific starvation response.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读