例如:"lncRNA", "apoptosis", "WRKY"

Unexpected role of the L-domain of calpastatin during the autoproteolytic activation of human erythrocyte calpain.

Biosci. Rep.2018 Apr 20;38(2)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Autoproteolysis of human erythrocyte calpain-1 proceeds in vitro at high [Ca2+], through the conversion of the 80-kDa catalytic subunit into a 75-kDa activated enzyme that requires lower [Ca2+] for catalysis. Importantly, here we detect a similar 75 kDa calpain-1 form also in vivo, in human meningiomas. Although calpastatin is so far considered the specific inhibitor of calpains, we have previously identified in rat brain a calpastatin transcript truncated at the end of the L-domain (cast110, L-DOM), coding for a protein lacking the inhibitory units. Aim of the present study was to characterize the possible biochemical role of the L-DOM during calpain-1 autoproteolysis in vitro, at high (100 µM) and low (5 µM) [Ca2+]. Here we demonstrate that the L-DOM binds the 80 kDa proenzyme in the absence of Ca2+ Consequently, we have explored the ability of the 75 kDa activated protease to catalyze at 5 µM Ca2+ the intermolecular activation of native calpain-1 associated with the L-DOM. Notably, this [Ca2+] is too low to promote the autoproteolytic activation of calpain-1 but enough to support the catalysis of the 75 kDa calpain. We show for the first time that the L-DOM preserves native calpain-1 from the degradation mediated by the 75 kDa form. Taken together, our data suggest that the free L-domain of calpastatin is a novel member of the calpain/calpastatin system endowed with a function alternative to calpain inhibition. For this reason, it will be crucial to define the intracellular relevance of the L-domain in controlling calpain activation/activity in physiopathological conditions having altered Ca2+ homeostasis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读