例如:"lncRNA", "apoptosis", "WRKY"

Nucleotide sequence and characterization of the pyrF operon of Escherichia coli K12.

J Biol Chem. 1987 Jul 25;262(21):10239-45
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The pyrF gene of Escherichia coli K12, which encodes the pyrimidine biosynthetic enzyme orotidine-5'-monophosphate (OMP) decarboxylase, is part of an operon that includes a downstream gene designated orfF. The orfF gene product is a small polypeptide of unknown function. The nucleotide sequence of a 1549-base pair chromosomal fragment containing this operon was determined. An open reading frame capable of encoding the 27-kDa OMP decarboxylase subunit was identified and shown to be the pyrF structural gene by purifying and characterizing OMP decarboxylase. The subunit molecular weight (Mr = 26,350), amino-terminal amino acid sequence, and amino acid composition of the polypeptide predicted from the nucleotide sequence are in excellent agreement with those properties determined for the purified enzyme. The orfF structural gene was tentatively identified and apparently encodes an 11,396-dalton polypeptide. The orfF translational initiation codon overlaps the pyrF termination codon, which may indicate translational coupling in the expression of these genes. The pyrF promoter was mapped by primer extension of in vivo transcripts. The primary transcriptional initiation site is 51 base pairs upstream of the pyrF structural gene. The level of pyrF transcription and OMP decarboxylase synthesis was found to be coordinately derepressed by pyrimidine limitation, indicating that regulation of pyrF gene expression occurs at the transcriptional level. Inspection of the nucleotide sequence indicates that pyrF gene expression is not regulated by an attenuation control mechanism similar to that described for the pyrBI operon or pyrE gene. Finally, we compared the amino acid sequences of the OMP decarboxylases from E. coli, Saccharomyces cerevisiae, Neurospora crassa, and Ehrlich ascites cells to identify conserved regions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读