例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-143 Targets ATG2B to Inhibit Autophagy and Increase Inflammatory Responses in Crohn's Disease.

Inflamm. Bowel Dis.2018 Mar 19;24(4):781-791
Xu-Tao Lin 1 , Xiao-Bin Zheng 1 , De-Jun Fan 1 , Qiu-Qiong Yao 1 , Jian-Cong Hu 1 , Lei Lian 1 , Xiao-Jian Wu 1 , Ping Lan 1 , Xiao-Sheng He 1
Xu-Tao Lin 1 , Xiao-Bin Zheng 1 , De-Jun Fan 1 , Qiu-Qiong Yao 1 , Jian-Cong Hu 1 , Lei Lian 1 , Xiao-Jian Wu 1 , Ping Lan 1 , Xiao-Sheng He 1
+ et al

[No authors listed]

Author information
  • 1 Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.

摘要


Background:Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including Crohn's disease (CD). Genetic analyses have found that microRNA (miRNA) levels are altered in the intestinal tissues of CD patients. Methods:The Sequencing Alternative Poly-Adenylation Sites (SAPAS) method was used to compare the 3' end of the total mRNA sequence of 3 surgical specimens of CD patients (including inflamed tissues and corresponding noninflamed tissues in each case). The levels of autophagy-related 2B (ATG2B), LC3, and miR-143 were compared between inflamed tissues and noninflamed tissues using immunoblot and quantitative reverse transcription polymerase chain reaction. Luciferase assays were used to verify the interactions between miR-143 and ATG2B. Autophagy was measured by immunoblot analyses of LC3 and transmission electron microscopy. Inflammatory cytokines and IκBα were analyzed to evaluate the effect of miR-143 on inflammatory response. Results:The tandem repeat 3'-UTR of ATG2B was longer in inflamed tissues than in corresponding noninflamed tissues and contained an miR-143 target site. miR-143 expression was elevated, whereas ATG2B and LC3-II were downregulated in inflamed tissues. The direct interaction between miR-143 and ATG2B was verified by a 3'-UTR dual-luciferase reporter assay. Constitutive expression of miR-143 or depletion of ATG2B in cultured intestinal epithelial cells inhibited autophagy, reduced IκBα levels, and increased inflammatory responses. Conclusions:miR-143 may induce bowel inflammation by regulating ATG2B and autophagy, suggesting that miR-143 might play a critical role in the development of CD. Therefore, miR-143 could be a promising novel target for gene therapy in CD patients.