例如:"lncRNA", "apoptosis", "WRKY"

microRNA-520f inhibits hepatocellular carcinoma cell proliferation and invasion by targeting TM4SF1.

Gene. 2018 May 30;657:30-38. Epub 2018 Mar 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


microRNAs (miRNAs) are reported to play crucial roles in tumorigenesis. Dysregulation of miR-520f has been implicated to be involved in several cancer progressions. However, the biological functions of miR520f in hepatocellular carcinoma (HCC) remain unclear. Thus, the molecular mechanism underlying miR-520f on HCC development was investigated in this study. Here, we found that miR-520f was remarkably down-regulated in human HCC samples and cell lines compared to paired normal tissues and cell lines as detected by qRT-PCR. Furthermore, the deregulated miR-520f was strongly associated with larger tumor size, advanced TNM stage, and metastasis in HCC patients. Functional investigations revealed that overexpression of miR-520f significantly suppressed cell proliferation, invasion and migration, caused cell cycle arrested at G0/G1 phase, and promoted cell apoptosis in HCC cells according to MTT, colony formation, transwell, and flow cytometry assays, respectively, whereas, downregulation of miR-520f exhibited inverse effects. Transmembrane-4 L-Six family member-1 (TM4SF1) was identified as a direct target of miR-520f, and an inverse relationship was found between miR-520f and TM4SF1 mRNA levels in HCC specimens. Rescue experiments suggested that restoration of TM4SF1 partially abolished miR-520f-meidated cell proliferation and invasion inhibition in HCC cells through regulating P13K/AKT and p38 MAPK signaling pathways. In conclusion, these data indicated that miR-520f acted as tumor suppressor in HCC proliferation and invasion by targeting TM4SF1, which might provide potential therapeutic evidence for HCC patients.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读