例如:"lncRNA", "apoptosis", "WRKY"

Abnormal expression of ER quality control and ER associated degradation proteins in the dorsolateral prefrontal cortex in schizophrenia.

Schizophr Res. 2018 Jul;197:484-491. Epub 2018 Feb 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Abnormalities in posttranslational protein modifications (PTMs) that regulate protein targeting, trafficking, synthesis, and function have been implicated in the pathophysiology of schizophrenia. The endoplasmic reticulum (ER) contains specialized machinery that facilitate protein synthesis, ER entry and exit, quality control, and post-translational processing, steps required for protein maturation. Dysregulation of these systems could represent potential mechanisms for abnormalities of neurotransmitter associated proteins in schizophrenia. We hypothesized that expression of ER processing pathways is dysregulated in schizophrenia. We characterized protein and complex expression of essential components from protein folding, ER quality control and ER associated degradation (ERAD) processes in the dorsolateral prefrontal cortex of 12 matched pairs of elderly schizophrenia and comparison subjects. We found increased expression of proteins associated with recognizing and modifying misfolded proteins, including UDP-glucose/glycoprotein glucosyltransferase 2 (UGGT2), ER degradation enhancing alpha-mannosidase like protein 2 (EDEM2), and synoviolin (SYVN1)/HRD1. As SYVN1/HRD1 is a component of the ubiquitin ligase HRD1-SEL1L complex that facilitates ERAD, we immunoprecipitated SEL1L and measured expression of other proteins in this complex. In schizophrenia, SYVN1/HRD1 and OS-9, ERAD promoters, have increased association with SEL1L, while XTP3-B, which can prevent ERAD of substrates, has decreased association. Abnormal expression of proteins associated with and ERAD suggests dysregulation in ER localized protein processing pathways in schizophrenia. Interestingly, the deficits we found are not in the protein processing machinery itself, but in proteins that recognize and target incompletely or misfolded proteins. These changes may reflect potential mechanisms of abnormal neurotransmitter associated protein expression previously observed in schizophrenia.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读