[No authors listed]
At similar smoking levels, African American's lung cancer risk is as much as twice that of whites. We hypothesized that racial/ethnic differences in UDP-glucuronosyltransferase (UGT)-catalyzed glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a detoxication pathway for the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) may contribute to this variable risk. UGT2B10 catalyzes NNAL- N-glucuronidation, and a UGT2B10 splice variant is common among African Americans. Smokers from two independent studies were genotyped for this variant (rs116294140) and an Asp67Tyr variant (rs61750900), and urinary NNAL and NNAL-glucuronide concentrations were quantified. In the first, no significant differences in NNAL- N-glucuronidation between African Americans ( n = 257) and whites ( n = 354) or between homozygous carriers of UGT2B10 variants (genetic score 2) and noncarriers (score 0) were detected. However, total NNAL glucuronidation by score 2 compared to score 0 smokers was lower (68.9 vs 71.2%, p < 0.0001). For NNAL- N-glucuronide to be more precisely quantified in a second study, a sensitive high-resolution LC-MS/MS-based method, which separated NNAL, NNAL- O-glucuronide, and NNAL- N-glucuronide prior to analysis, was developed. In this study, the excretion of total NNAL (free plus glucuronides) by African American ( n = 52) and white ( n = 54) smokers was not different; however, total NNAL glucuronidation by African Americans (64.0%) was slightly less than by whites (68.3%, p = 0.05). The mean NNAL- N-glucuronidation by African Americans was much lower than for whites (14 vs 24.9%, p < 0.00001), but the NNAL- O-glucuronidation was greater (50.0 vs 43.3%, p = 0.013). UGT2B10 genotype influenced NNAL- N-glucuronidation; the geometric mean percentage N-glucuronidation was 22.5% for smokers with genetic score 0 ( n = 57) and 11.2% for score 2 ( n = 11). In summary, the high prevalence of a UGT2B10 splice variant among African Americans results in lower NNAL- N-glucuronidation but only a small decrease in total NNAL glucuronidation. Therefore, despite the significant contribution of UGT2B10 to NNAL- N-glucuronidation, the UGT2B10 genotype does not play a large role in NNAL detoxication. Any decrease in N-glucuronidation was accompanied by a parallel increase in O-glucuronidation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |