[No authors listed]
Chlorophyll is synthesized from activated glutamate in the tetrapyrrole biosynthesis pathway through at least 20 different enzymatic reactions. Among these, the MgProto monomethylester (MgProtoME) cyclase catalyzes the formation of a fifth isocyclic ring to tetrapyrroles to form protochlorophyllide. The enzyme consists of two proteins. The CHL27 protein is proposed to be the catalytic component, while LCAA/YCF54 likely acts as a scaffolding factor. In comparison to other reactions of chlorophyll biosynthesis, this enzymatic step lacks clear elucidation and it is hardly understood, how electrons are delivered for the NADPH-dependent cyclization reaction. The present study intends to elucidate more precisely the role of LCAA/YCF54. Transgenic Arabidopsis lines with inactivated and overexpressed YCF54 reveal the mutual stability of YCF54 and CHL27. Among the YCF54-interacting proteins, the plastidal ferredoxin-NADPH reductase (FNR) was identified. We showed in N. tabacum and A. thaliana that a deficit of FNR1 or YCF54 caused MgProtoME accumulation, the substrate of the cyclase, and destabilization of the cyclase subunits. It is proposed that FNR serves as a potential donor for electrons required in the cyclase reaction and connects chlorophyll synthesis with photosynthetic activity.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |