例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-3188 targets ETS-domain protein 4 and participates in RhoA/ROCK pathway to regulate the development of atherosclerosis.

Pharmazie. 2017 Nov 01;72(11):687-693. doi:10.1691/ph.2017.7686
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We aimed to elucidate the roles and regulatory mechanism of miR-3188 in oxidized low-density lipoprotein (ox-LDL)-induced cell injury in THP-1 derived macrophages, thus providing a new insight for the treatment of atherosclerosis (AS). A total of 85 AS patients and 45 healthy controls were enrolled. The levels of miR-3188 and lipoprotein-associated phospholipase A2 (Lp-PLA2) in AS patients and healthy controls were detected. Then ox-LDL was used to treat human THP-1 derived macrophages. The effects of overexpression and suppression of miR-3188 on regulating ox-LDL-induced cell injury in THP-1 derived macrophages were investigated. Additionally, the potential target of miR-3188 was identified, which was verified by luciferase reporter assay. Besides, the relationship between miR-3188 and RhoA/ROCK pathway was explored. miR-3188 was downregulated in AS patients, while the levels of Lp-PLA2 in AS patients were increased. Ox-LDL significantly induced cell injury by decreasing cell viability, inducing cell apoptosis and increasing the production of inflammatory cytokines, including IL-1β, IL-6, MCP-1 and TNF-α. In addition, miR-3188 was significantly downregulated after ox-LDL treatment. Overexpression of miR-3188 alleviated ox-LDL-induced cell injury, while inhibition of miR-3188 had opposite effects. ETS-domain protein 4 (ELK4) was a target of miR-3188. The effects of miR-3188 inhibition on ox-LDL-induced cell injury were markedly reversed by knockdown of ELK4. Besides, inhibition of miR-3188 enhanced ox-LDL-activated RhoA/ROCK pathway, while knockdown of ELK4 suppressed this pathway. Downregulation of miR-3188 may contribute to AS development via negatively regulating Lp-PLA2, targeting ELK4 and activating RhoA/ROCK pathway. miR-3188 may serve as a target for AS treatment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读