例如:"lncRNA", "apoptosis", "WRKY"

MORG1+/- mice are protected from histological renal damage and inflammation in a murine model of endotoxemia.

BMC Nephrol. 2018 Feb 05;19(1):29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The MAPK-organizer 1 (MORG1) play a scaffold function in the MAPK and/or the PHD3 signalling paths. Recently, we reported that MORG1+/- mice are protected from renal injury induced by systemic hypoxia and acute renal ischemia-reperfusion injury via increased hypoxia-inducible factors (HIFs). Here, we explore whether MORG1 heterozygosity could attenuate renal injury in a murine model of lipopolysaccharide (LPS) induced endotoxemia. METHODS:Endotoxemia was induced in mice by an intraperitoneal (i.p) application of 5 mg/kg BW LPS. The renal damage was estimated by periodic acid Schiff's staining; renal injury was evaluated by detection of urinary and plasma levels of neutrophil gelatinase-associated lipocalin and albumin/creatinine ratio via ELISAs. Renal mRNA expression was assessed by real-time PCR, whereas the protein expression was determined by immunohistochemistry or Western blotting. RESULTS:LPS administration increased tubular injury, microalbuminuria, IL-6 plasma levels and renal TNF-α expression in MORG1 +/+ mice. This was accompanied with enhanced infiltration of the inflammatory T-cells in renal tissue and activation of the NF-κB transcription factors. In contrast, endotoxemic MORG1 +/- showed significantly less tubular injury, reduced plasma IL-6 levels, significantly decreased renal TNF-α expression and T-cells infiltration. In support, the renal levels of activated caspase-3 were lower in endotoxemic MORG1 +/- mice compared with endotoxemic MORG1 +/+ mice. Interestingly, LPS application induced a significantly higher accumulation of renal HIF-2α in the kidneys of MORG1+/- mice than in wild-type mice, accompanied with a diminished phosphorylation of IκB-α and IKK α,β and decreased iNOS mRNA in the renal tissues of the LPS-challenged MORG1+/- mice, indicating an inhibition of the NF-κB transcriptional activation. CONCLUSIONS:MORG1 heterozygosity protects against histological renal damage and shows anti-inflammatory effects in a murine endotoxemia model through modulation of HIF-2α stabilisation and/or simultaneous inhibition of the NF-κB signalling. Here, we show for the first time that MORG1 scaffold could represent the missing link between innate immunity and inflammation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读