例如:"lncRNA", "apoptosis", "WRKY"

Four Arabidopsis berberine bridge enzyme-like proteins are specific oxidases that inactivate the elicitor-active oligogalacturonides.

Plant J.2018 Apr;94(2):260-273. doi:10.1111/tpj.13852. Epub 2018 Mar 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Recognition of endogenous molecules acting as 'damage-associated molecular patterns' (DAMPs) is a key feature of immunity in both animals and plants. Oligogalacturonides (OGs), i.e. fragments derived from the hydrolysis of homogalacturonan, a major component of pectin are a well known class of DAMPs that activate immunity and protect plants against several microbes. However, hyper-accumulation of OGs severely affects growth, eventually leading to cell death and clearly pointing to OGs as players in the growth-defence trade-off. Here we report a mechanism that may control the homeostasis of OGs avoiding their deleterious hyper-accumulation. By combining affinity chromatography on acrylamide-trapped OGs and other procedures, an Arabidopsis thaliana enzyme that specifically oxidizes OGs was purified and identified. The enzyme was named OG OXIDASE 1 (OGOX1) and shown to be encoded by the gene At4g20830. As a typical flavo-protein, OGOX1 is a sulphite-sensitive H2 O2 -producing enzyme that displays maximal activity on OGs with a degree of polymerization >4. OGOX1 belongs to a large gene family of mainly apoplastic putative FAD-binding proteins [Berberine Bridge Enzyme-like (BBE-like); 27 members], whose biochemical and biological function is largely unexplored. We have found that at least four BBE-like enzymes in Arabidopsis are OG oxidases (OGOX1-4). Oxidized OGs display a reduced capability of activating the immune responses and are less hydrolysable by fungal polygalacturonases. Plants overexpressing OGOX1 are more resistant to Botrytis cinerea, pointing to a crucial role of OGOX enzymes in plant immunity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读