例如:"lncRNA", "apoptosis", "WRKY"

Presenilin PS1∆E9 disrupts mobility of secretory organelles in rat astrocytes.

Acta Physiol (Oxf). 2018 Jun;223(2):e13046. doi:10.1111/apha.13046. Epub 2018 Feb 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIM:Alzheimer's disease (AD) is largely considered a neuron-derived insult, but also involves failure of astroglia. A recent study indicated that mutated presenilin 1 (PS1M146V), a putative endoplasmic reticulum (ER) Ca2+ channel with decreased Ca2+ conductance, impairs the traffic of astroglial peptidergic vesicles. Whether other pathogenically relevant PS1 mutants, such as PS1ΔE9, which code for ER channel with putative increased Ca2+ conductance, similarly affect vesicle traffic, is unknown. METHODS:Here, we cotransfected rat astrocytes with plasmids encoding mutant PS1ΔE9 and atrial natriuretic peptide or vesicular glutamate transporter 1 tagged with fluorescent proteins (pANP.emd or pVGLUT1-EGFP respectively), to microscopically examine whether alterations in vesicle mobility and Ca2+ -regulated release of gliosignalling molecules manifest as a general vesicle-based defect; control cells were transfected to co-express exogenous or native wild-type PS1 and pANP.emd or pVGLUT1-EGFP. The vesicle mobility was analysed at rest and after ATP stimulation that increased intracellular calcium activity. RESULTS:In PS1ΔE9 astrocytes, spontaneous mobility of both vesicle types was reduced (P < .001) when compared to controls. Post-stimulatory recovery of fast vesicle mobility was hampered in PS1ΔE9 astrocytes. The ATP-evoked peptide release was less efficient in PS1ΔE9 astrocytes than in the controls (P < .05), as was the pre-stimulatory mobility of these vesicles. CONCLUSION:Although the PS1 mutants PS1M146V and PS1ΔE9 differently affect ER Ca2+ conductance, our results revealed a common, vesicle-type indiscriminate trafficking defect in PS1ΔE9 astrocytes, indicating that reduced secretory vesicle-based signalling is a general deficit in AD astrocytes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读