例如:"lncRNA", "apoptosis", "WRKY"

The C-Domain of the NAC Transcription Factor ANAC019 Is Necessary for pH-Tuned DNA Binding through a Histidine Switch in the N-Domain.

Cell Rep. 2018 Jan 30;22(5):1141-1150
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The affinity of transcription factors (TFs) for their target DNA is a critical determinant of gene expression. Whether the DNA-binding domain (DBD) of TFs alone can regulate binding affinity to DNA is an important question for identifying the design principle of TFs. We studied ANAC019, a member of the NAC TF family of proteins in Arabidopsis, and found a well-conserved histidine switch located in its DBD, which regulates both homodimerization and transcriptional control of the TF through H135 protonation. We found that the removal of a C-terminal intrinsically disordered region (IDR) in the TF abolished the pH-dependent binding of the N-terminal DBD to DNA. We propose a mechanism in which long-range electrostatic interactions between DNA and the negatively charged C-terminal IDR turns on the pH dependency of the DNA-binding affinity of the N-terminal DBD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读